Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh

Author:

Krask Julie L.ORCID,Buck Tracy L.,Dunn Robert P.ORCID,Smith Erik M.

Abstract

Salt marshes are ecologically and economically important features of coastal environments that are vulnerable to sea level rise, the rate of which has accelerated in recent decades along the southeastern US Atlantic coast. Increased flooding frequency and duration across the marsh platform is predicted to impact vegetation community structure and overall marsh persistence, but the effect of changing inundation patterns on biogeochemical processes in marsh sediments remains largely unexplored. As part of a long-term monitoring effort to assess how marshes are responding to sea level rise in North Inlet estuary (South Carolina, USA), we collected data on porewater nutrient concentrations from a series of permanent monitoring plots across multiple transects spanning the marsh elevation gradient during the growing season from 2009 to 2019. Additionally, we calculated time inundated for each plot using local water level data and high-resolution elevation measurements to assess the change in time flooded at each plot. Our results indicate that both NH4 and PO4 nutrient concentrations have increased in most permanent plots over the 11-year study period and that nutrient concentrations are higher with increasing proximity to the creek. Spatial patterns in nutrient increases through time are coincident with considerable increases in tidal inundation observed over the marsh platform. Across plots located in the low marsh, porewater NH4 and PO4 concentrations have risen at average rates of 8.96 μM/year and 0.86 μM/year, respectively, and have reached rates as high as 27.25 μM/year and 3.13 μM/year. We suggest that increased inundation time due to rising sea level has altered biogeochemical conditions influencing nutrient availability in marsh porewater, resulting in increases that likely have relevance for larger scale nutrient cycles as well as marsh ecosystem stability and function.

Funder

National Ocean Service

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3