Contrasting trends in water quality between adjacent ocean‐ and river‐dominated estuaries: Evidence for marsh porewaters as a source of nutrient enrichment?

Author:

Dunn Robert P.12ORCID,Krask Julie L.12,Pinckney James L.2ORCID,Smith Erik M.12

Affiliation:

1. North Inlet‐Winyah Bay National Estuarine Research Reserve Georgetown South Carolina USA

2. Baruch Institute for Marine and Coastal Sciences University of South Carolina Columbia South Carolina USA

Abstract

AbstractDegradation of estuarine water quality during the Anthropocene has largely resulted from discharges of nutrients leading to eutrophication. Recently, upstream management practices have led to comparatively reduced nutrient input into estuaries. Concurrently, climate cycles and impacts associated with anthropogenic climate warming can affect the long‐term conditions observed within estuaries. Using long‐term monitoring data from adjacent southeastern U.S. estuaries, we show that decadal‐scale trends in nutrient concentrations and phytoplankton standing stock differ between the two connected systems. These contrasting trends appear to result from differences in oceanic influence, the extent of adjacent vegetated marsh, watershed size, and upstream degradation. In the minimally impacted, ocean‐dominated North Inlet estuary, we document increasing ammonium and chlorophyll a (Chl a), while in the adjacent, river‐dominated Winyah Bay, ammonium, and Chl a concentrations are more variable but do not appear to have increased over the same time period. Surprisingly, total nitrogen exhibits the opposite pattern: temporal stability in North Inlet but increasing in Winyah Bay. We hypothesize that sea level rise associated with climate change has driven a complex set of interactions between salt marsh porewaters and tidal pumping, leading to the spillover of nutrients from salt marshes into tidal creeks in North Inlet. In Winyah Bay, this mechanism is less evident as a driver of ammonium concentrations, likely due to the outsized effect of watershed nutrient input and the narrow fringing marsh platform. The degree to which this mechanism operates in other estuaries, which vary in tidal range, the extent of vegetated marsh, watershed size, and degree of anthropogenic degradation warrants further study.

Funder

Office for Coastal Management

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3