Predicting flood damage using the flood peak ratio and Giovanni Flooded Fraction

Author:

Ghaedi Hamed,Reilly Allison C.ORCID,Baroud Hiba,Perrucci Daniel V.,Ferreira Celso M.

Abstract

A spatially-resolved understanding of the intensity of a flood hazard is required for accurate predictions of infrastructure reliability and losses in the aftermath. Currently, researchers who wish to predict flood losses or infrastructure reliability following a flood usually rely on computationally intensive hydrodynamic modeling or on flood hazard maps (e.g., the 100-year floodplain) to build a spatially-resolved understanding of the flood’s intensity. However, both have specific limitations. The former requires both subject matter expertise to create the models and significant computation time, while the latter is a static metric that provides no variation among specific events. The objective of this work is to develop an integrated data-driven approach to rapidly predict flood damages using two emerging flood intensity heuristics, namely the Flood Peak Ratio (FPR) and NASA’s Giovanni Flooded Fraction (GFF). This study uses data on flood claims from the National Flood Insurance Program (NFIP) to proxy flood damage, along with other well-established flood exposure variables, such as regional slope and population. The approach uses statistical learning methods to generate predictive models at two spatial levels: nationwide and statewide for the entire contiguous United States. A variable importance analysis demonstrates the significance of FPR and GFF data in predicting flood damage. In addition, the model performance at the state-level was higher than the nationwide level analysis, indicating the effectiveness of both FPR and GFF models at the regional level. A data-driven approach to predict flood damage using the FPR and GFF data offer promise considering their relative simplicity, their reliance on publicly accessible data, and their comparatively fast computational speed.

Funder

Gulf Research Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference55 articles.

1. A Revised Hurricane Pressure–Wind Model;G. Holland;Monthly Weather Review,2008

2. Classifying earthquake damage to buildings using machine learning;S Mangalathu;Earthquake Spectra,2020

3. Prediction of peak ground acceleration using ϵ-SVR, ν-SVR and Ls-SVR algorithm;S Thomas;Geomatics, Natural Hazards and Risk,2017

4. Review article “Assessment of economic flood damage.”;B Merz;Natural Hazards and Earth System Sciences,2010

5. Evaluation of 1D and 2D numerical models for predicting river flood inundation;MS Horritt;Journal of Hydrology,2002

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3