Classifying earthquake damage to buildings using machine learning

Author:

Mangalathu Sujith1,Sun Han2,Nweke Chukwuebuka C.3,Yi Zhengxiang3,Burton Henry V.3

Affiliation:

1. Research Data Scientist, Equifax Inc, Alpharetta, Atlanta, USA

2. Research Engineer, Yahoo Research

3. School of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA

Abstract

The ability to rapidly assess the spatial distribution and severity of building damage is essential to post-event emergency response and recovery. Visually identifying and classifying individual building damage requires significant time and personnel resources and can last for months after the event. This article evaluates the feasibility of using machine learning techniques such as discriminant analysis, k-nearest neighbors, decision trees, and random forests, to rapidly predict earthquake-induced building damage. Data from the 2014 South Napa earthquake are used for the study where building damage is classified based on the assigned Applied Technology Council (ATC)-20 tag (red, yellow, and green). Spectral acceleration at a period of 0.3 s, fault distance, and several building specific characteristics (e.g. age, floor area, presence of plan irregularity) are used as features or predictor variables for the machine learning models. A portion of the damage data from the Napa earthquake is used to obtain the forecast model, and the performance of each machine learning technique is evaluated using the remaining (test) data. It is noted that the random forest algorithm can accurately predict the assigned tags for 66% of the buildings in the test dataset.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3