Exercise-induced myokines downregulates the ACE2 level in bronchial epithelial cells: Implications for SARS-CoV-2 prevention

Author:

Bhardwaj Vaishali,Dela Cruz Mart,Subramanyam Deepika,Kumar Rohit,Markan Sandeep,Parker Beth,Roy Hemant K.ORCID

Abstract

Background The Covid-19 pandemic has emerged as the leading public health challenge of our time (20th century). While vaccinations have finally blunted the death rate, concern has remained about more virulent forms highlighting the need for alternative approaches. Epidemiological studies indicate that physical activity has been shown to decrease the risk of infection of some respiratory viruses. Part of the salutary effects of exercise is believed to be through the elaboration of cytokines by contracting skeletal muscles (termed myokines). The objective of this study was to investigate whether exercise-induced myokines would mitigate the SARS-CoV-2 infectivity of the bronchial epithelium through modulating the SARS-CoV-2 Covid-19 receptor (angiotensin-converting enzyme 2 -ACE2) its priming enzyme, transmembrane serine protease 2 (TMPRSS2). Methods We utilized a cell culture model of exercise to generate myokines by differentiating C2C12 cells into myotubules and inducing them to contract via low-frequency electric pulse stimulation. Condition media was concentrated via centrifugation and applied to human immortalized human bronchial epithelium cell line (6HBE14o) along with conditioned media from unstimulated myotubules as controls. Following exposure to myokines, the 16HBE14o cells were harvested and subjected to quantitative RT-PCR and Enzyme-Linked Immunosorbent Assay (ELISA) for assessment of mRNA and protein levels of ACE2 and TMPRSS2, respectively. Pilot proteomic data was performed with isotope barcoding and mass spectroscopy. Results Quantitative Real-Time PCR of 16HBE14o with 48 h treated unstimulated vs. stimulated myokine treatment revealed a reduction of ACE2 and TMPRSS2 mRNA by 32% (p<2.69x10-5) and 41% (p<4.57x10-5), respectively. The high sensitivity of ELISAs showed downregulation of ACE2 and TMPRSS2 protein expression in 16HBE14o cells by 53% (p<0.01) and 32% (p<0.03) respectively with 48 h treated. For rigor, this work was replicated in the human lung cancer cell line A549, which mirrored the downregulation. Proteomic analysis showed dramatic alteration in myokine profile between contracted and uncontracted C2C12 tubules. Conclusions The current study explores a novel approach of a modified exercise cell culture system and uses ACE2 and TMPRSS2 as a surrogate marker of SARS-CoV-2 infectivity. In conclusion, we demonstrated biological data supporting exercise’s protective effect against Covid-19. These further strengthen myokines’ beneficial role as potential therapeutic targets against SARS-CoV-2 and similar viruses albeit these preliminary cell culture studies will require future validation in animal models.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3