Deep learning recommendation algorithm based on semantic mining

Author:

Huang YongxinORCID,Wang HezhengORCID,Wang Rui

Abstract

This paper proposes Deep Semantic Mining based Recommendation (DSMR), which can extract user features and item attribute features more accurately by deeply mining the semantic information of review text and item description documents recommend. First, the proposed model uses the BERT pre-training model to process review texts and item description documents, and deeply mine user characteristics and item attributes, which effectively alleviates the problems of data sparseness and item cold start; Then, the forward LSTM is used to pay attention to the changes of user preferences over time, and a more accurate recommendation is obtained; finally, in the model training stage, the experimental data are randomly divided into 1 to 5 points, 1:1:1:1:1. Extraction ensures that the amount of data for each score is equal, so that the results are more accurate and the model is more robust. Experiments are carried out on four commonly used Amazon public data sets, and the results show that with the root mean square error as the evaluation index, the error of DSMR recommendation results is at least 11.95% lower on average than the two classic recommendation models based only on rating data. At the same time, it is better than the three latest recommendation models based on review text, and it is 5.1% lower than the best model on average.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3