Author:
Bao Yang,Fang Hui,Zhang Jie
Abstract
Although users' preference is semantically reflected in the free-form review texts, this wealth of information was not fully exploited for learning recommender models. Specifically, almost all existing recommendation algorithms only exploit rating scores in order to find users' preference, but ignore the review texts accompanied with rating information. In this paper, we propose a novel matrix factorization model (called TopicMF) which simultaneously considers the ratings and accompanied review texts. Experimental results on 22 real-world datasets show the superiority of our model over the state-of-the-art models, demonstrating its effectiveness for recommendation tasks.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献