A rapid and accurate method for estimating the erythrocyte sedimentation rate using a hematocrit-corrected optical aggregation index

Author:

Higuchi Makoto,Watanabe NobuoORCID

Abstract

Although both the erythrocyte sedimentation rate (ESR) and optically measured erythrocyte aggregation parameters are affected by the hematocrit, this interaction is not considered by the method used to estimate ESR that considers aggregation parameters. In this study, we investigated the relationship between the ESR obtained by the Westergren method and that obtained with an aggregation parameter, namely, the aggregation index (AI) of multiple hematocrit values and fibrinogen-spiked samples with an analysis time of 5–60 s, and attempted to develop a rapid and accurate ESR estimation method. The AIs obtained from 5- and 10-s optical measurements with a fixed hematocrit were highly correlated with the erythrocyte sedimentation velocity. Furthermore, the rate of the AI increase with an increasing hematocrit was not significantly affected by the fibrinogen concentration at these measurement times. On the basis of these results, we defined the hematocrit-corrected aggregation index (HAI). The exponential function of the HAI obtained from the 5-s measurement agreed well with the sedimentation velocity calculated to eliminate the effect of hindered settling, and the HAI and hematocrit could be used to calculate the time constant of the sedimentation curve with a linear regression equation. The ESR value at 1 h was calculated based on the modified Stokes’ law and the HAI obtained from the 5-s measurement and showed an excellent correlation (R = 0.966) with the ESR value obtained by the Westergren method over a wide range of hematocrit and fibrinogen concentrations.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3