Variational mode decomposition combined fuzzy—Twin support vector machine model with deep learning for solar photovoltaic power forecasting

Author:

Balraj Gobu,Victoire Aruldoss AlbertORCID,S. Jaikumar,Victoire Amalraj

Abstract

A novel Variational Mode Decomposition (VMD) combined Fuzzy-Twin Support Vector Machine Model with deep learning mechanism is devised in this research study to forecast the solar Photovoltaic (PV) output power in day ahead basis. The raw data from the solar PV farms are highly fluctuating and to extract the useful stable components VMD is employed. A novel Fuzzy–Twin Support Vector Machine (FTSVM) model developed acts as the forecasting model for predicting the solar PV output power for the considered solar farms. The twin support vector machine (SVM) model formulates two separating hyperplanes for predicting the output power and in this research study a fuzzy based membership function identifies most suitable two SVM prediction hyperplanes handling the uncertainties of solar farm data. For the developed, new VMD-FTSVM prediction technique, their optimal parameters for the training process are evaluated with the classic Ant Lion Optimizer (ALO) algorithm. The solar PV output power is predicted using the novel VMD-FTSVM model and during the process multi-kernel functions are utilized to devise the two fuzzy based hyperplanes that accurately performs the prediction operation. Deep learning (DL) based training of the FTSVM model is adopted so that the deep auto-encoder and decoder module enhances the accuracy rate. The proposed combined forecasting model, VMD-ALO-DLFTSVM is validated for superiority based on a two 250MW PV solar farm in India. Results prove that the proposed model outperforms the existing model in terms of the performance metrics evaluated and the forecasted PV Power.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3