Improving classification and reconstruction of imagined images from EEG signals

Author:

Shimizu HirokatsuORCID,Srinivasan Ramesh

Abstract

Decoding brain activity related to specific tasks, such as imagining something, is important for brain computer interface (BCI) control. While decoding of brain signals, such as functional magnetic resonance imaging (fMRI) signals and electroencephalography (EEG) signals, during observing visual images and while imagining images has been previously reported, further development of methods for improving training, performance, and interpretation of brain data was the goal of this study. We applied a Sinc-EEGNet to decode brain activity during perception and imagination of visual stimuli, and added an attention module to extract the importance of each electrode or frequency band. We also reconstructed images from brain activity by using a generative adversarial network (GAN). By combining the EEG recorded during a visual task (perception) and an imagination task, we have successfully boosted the accuracy of classifying EEG data in the imagination task and improved the quality of reconstruction by GAN. Our result indicates that the brain activity evoked during the visual task is present in the imagination task and can be used for better classification of the imagined image. By using the attention module, we can derive the spatial weights in each frequency band and contrast spatial or frequency importance between tasks from our model. Imagination tasks are classified by low frequency EEG signals over temporal cortex, while perception tasks are classified by high frequency EEG signals over occipital and frontal cortex. Combining data sets in training results in a balanced model improving classification of the imagination task without significantly changing performance in the visual task. Our approach not only improves performance and interpretability but also potentially reduces the burden on training since we can improve the accuracy of classifying a relatively hard task with high variability (imagination) by combining with the data of the relatively easy task, observing visual images.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference28 articles.

1. Linear classification of low-resolution EEG patterns produced by imagined hand movements;F Babiloni;IEEE Transactions on Rehabilitation Engineering,2000

2. Brain-computer interface technology: a review of the first international meeting;JR Wolpaw;IEEE Transactions on Rehabilitation Engineering,2000

3. A comprehensive review of EEG-based brain–computer interface paradigms;R Abiri;Journal of Neural Engineering,2019

4. Brain–computer interfaces for communication and control;JR Wolpaw;Clinical Neurophysiology,2002

5. The thought translation device (TTD) for completely paralyzed patients;N Birbaumer;IEEE Transactions on Rehabilitation Engineering,2000

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3