An easy‐to‐follow handbook for electroencephalogram data analysis with Python

Author:

Lu Zitong1ORCID,Li Wanru2,Nie Lu3,Zhao Kuangshi4

Affiliation:

1. Department of Psychology The Ohio State University Columbus Ohio USA

2. Peking‐Tsinghua Center of Life Sciences Peking University Beijing China

3. Department of Psychology Sun Yat‐Sen University Guangzhou Guangdong China

4. Neuracle Technology (Changzhou) Co., Ltd Changzhou Jiangsu China

Abstract

AbstractThis easy‐to‐follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in cognitive neuroscience and related fields. It spans from single‐subject data preprocessing to advanced multisubject analyses. This handbook contains four chapters: Preprocessing Single‐Subject Data, Basic Python Data Operations, Multiple‐Subject Analysis, and Advanced EEG Analysis. The Preprocessing Single‐Subject Data chapter provides a standardized procedure for single‐subject EEG data preprocessing, primarily using the MNE‐Python package. The Basic Python Data Operations chapter introduces essential Python operations for EEG data handling, including data reading, storage, and statistical analysis. The Multiple‐Subject Analysis chapter guides readers on performing event‐related potential and time‐frequency analyses and visualizing outcomes through examples from a face perception task dataset. The Advanced EEG Analysis chapter explores three advanced analysis methodologies, Classification‐based decoding, Representational Similarity Analysis, and Inverted Encoding Model, through practical examples from a visual working memory task dataset using NeuroRA and other powerful packages. We designed our handbook for easy comprehension to be an essential tool for anyone delving into EEG data analysis with Python (GitHub website: https://github.com/ZitongLu1996/Python‐EEG‐Handbook; For Chinese version: https://github.com/ZitongLu1996/Python‐EEG‐Handbook‐CN).

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3