CTG-Net: Cross-task guided network for breast ultrasound diagnosis

Author:

Yang KaiwenORCID,Suzuki Aiga,Ye Jiaxing,Nosato Hirokazu,Izumori Ayumi,Sakanashi HidenoriORCID

Abstract

Deep learning techniques have achieved remarkable success in lesion segmentation and classification between benign and malignant tumors in breast ultrasound images. However, existing studies are predominantly focused on devising efficient neural network-based learning structures to tackle specific tasks individually. By contrast, in clinical practice, sonographers perform segmentation and classification as a whole; they investigate the border contours of the tissue while detecting abnormal masses and performing diagnostic analysis. Performing multiple cognitive tasks simultaneously in this manner facilitates exploitation of the commonalities and differences between tasks. Inspired by this unified recognition process, this study proposes a novel learning scheme, called the cross-task guided network (CTG-Net), for efficient ultrasound breast image understanding. CTG-Net integrates the two most significant tasks in computerized breast lesion pattern investigation: lesion segmentation and tumor classification. Further, it enables the learning of efficient feature representations across tasks from ultrasound images and the task-specific discriminative features that can greatly facilitate lesion detection. This is achieved using task-specific attention models to share the prediction results between tasks. Then, following the guidance of task-specific attention soft masks, the joint feature responses are efficiently calibrated through iterative model training. Finally, a simple feature fusion scheme is used to aggregate the attention-guided features for efficient ultrasound pattern analysis. We performed extensive experimental comparisons on multiple ultrasound datasets. Compared to state-of-the-art multi-task learning approaches, the proposed approach can improve the Dice’s coefficient, true-positive rate of segmentation, AUC, and sensitivity of classification by 11%, 17%, 2%, and 6%, respectively. The results demonstrate that the proposed cross-task guided feature learning framework can effectively fuse the complementary information of ultrasound image segmentation and classification tasks to achieve accurate tumor localization. Thus, it can aid sonographers to detect and diagnose breast cancer.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference64 articles.

1. Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: results from the global burden of disease study 2017;NA Li;J. Hematol. Oncol,2019

2. Screening for breast cancer;DM Eddy;Ann. Intern. Med,1989

3. An overview of mammographic density and its association with breast cancer;SS Nazari;Breast Cancer,2018

4. Automatic breast ultrasound image segmentation: a survey;M Xian;Pattern Recognit,2018

5. Breast ultrasound image segmentation: a survey;Q Huang;Int. J. Comput. Assist. Radiol. Surg,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3