SaTransformer: Semantic‐aware transformer for breast cancer classification and segmentation

Author:

Zhang Jie1ORCID,Zhang Zhichao2,Liu Hua3,Xu Shiqiang4

Affiliation:

1. School of Medicine, Wuhan University of Science and Technology Department of Gynecology Renmin Hospital of Wuhan University Wuhan China

2. University of Birmingham Edgbaston Birmingham UK

3. Department of Gynecology Renmin Hospital of Wuhan University Wuhan Hubei China

4. School of Medicine Wuhan University of Science and Technology Wuhan Hubei China

Abstract

AbstractBreast cancer classification and segmentation play an important role in identifying and detecting benign and malignant breast lesions. However, segmentation and classification still face many challenges: 1) The characteristics of cancer itself, such as fuzzy edges, complex backgrounds, and significant changes in size, shape, and intensity distribution make accurate segment and classification challenges. 2) Existing methods ignore the potential relationship between classification and segmentation tasks, due to the classification and segmentation being treated as two separate tasks. To overcome these challenges, in this paper, a novel Semantic‐aware transformer (SaTransformer) for breast cancer classification and segmentation is proposed. Specifically, the SaTransformer enables doing the two takes simultaneously through one unified framework. Unlike existing well‐known methods, the segmentation and classification information are semantically interactive, reinforcing each other during feature representation learning and improving the ability of feature representation learning while consuming less memory and computational complexity. The SaTransformer is validated on two publicly available breast cancer datasets – BUSI and UDIAT. Experimental results and quantitative evaluations (accuracy: 97.97%, precision: 98.20%, DSC: 86.34%) demonstrate that the SaTransformer outperforms other state‐of‐the‐art methods.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3