Affiliation:
1. School of Medicine, Wuhan University of Science and Technology Department of Gynecology Renmin Hospital of Wuhan University Wuhan China
2. University of Birmingham Edgbaston Birmingham UK
3. Department of Gynecology Renmin Hospital of Wuhan University Wuhan Hubei China
4. School of Medicine Wuhan University of Science and Technology Wuhan Hubei China
Abstract
AbstractBreast cancer classification and segmentation play an important role in identifying and detecting benign and malignant breast lesions. However, segmentation and classification still face many challenges: 1) The characteristics of cancer itself, such as fuzzy edges, complex backgrounds, and significant changes in size, shape, and intensity distribution make accurate segment and classification challenges. 2) Existing methods ignore the potential relationship between classification and segmentation tasks, due to the classification and segmentation being treated as two separate tasks. To overcome these challenges, in this paper, a novel Semantic‐aware transformer (SaTransformer) for breast cancer classification and segmentation is proposed. Specifically, the SaTransformer enables doing the two takes simultaneously through one unified framework. Unlike existing well‐known methods, the segmentation and classification information are semantically interactive, reinforcing each other during feature representation learning and improving the ability of feature representation learning while consuming less memory and computational complexity. The SaTransformer is validated on two publicly available breast cancer datasets – BUSI and UDIAT. Experimental results and quantitative evaluations (accuracy: 97.97%, precision: 98.20%, DSC: 86.34%) demonstrate that the SaTransformer outperforms other state‐of‐the‐art methods.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献