Theoretical research on reasonable shield support capacity in close-multiple coal seams with the coordinated mining: A case study of Qianjiaying coal mine

Author:

Li Yang,Ren YuqiORCID,Lei Xinghai,Wang Nan,Jin Xiangyang,Li Guoshuai

Abstract

In order to assess the rationality of the rated shield support capacity (RSSC) experienced selection and guide the reasonable RSSC selection for the subsequent working faces of each coal seam, the coupling relationship between shield and roof strata was revealed during each coal seams mining. According to whether the fractured rock blocks generated by the main roof are articulated and whether the upper coal seam has been mined and influenced on the lower coal seam, two roof structure mechanical models of the rock blocks generated by the thick main roof and two calculation methods of a given load on the rock blocks are proposed. In addition, a selection method of roof structure model for maximum shield support capacity (MSSC) of close-multiple coal seams with the coordinated mining is put forward. Three roof structures to calculate the MSSC are established. Based on a case study of close-multiple coal seams with the coordinated mining in the Qianjiaying coal mine, the MSSC is calculated and analyzed in each coal seam combined with roof structure characteristics description, theoretical analysis, and field measurement. No.7, No.12-1, and No.5 coal seams mining are applicable to a voussoir beam balanced structure. No.8 coal seam mining is applicable to a balanced structure with a given load of loose body. No.9 coal seam mining is applicable to a voussoir beam balanced structure with a given load of loose body. Through the calculation, the MSSC of No.7, No.8, No.12-1, No.9, and No.5 coal seam is 3948.55kN, 4018.32kN, 4101.63kN, 3560.03kN, and 4015.30kN, respectively. And the RSSC suggested selection of each coal seam is 4500kN, 4300kN, 4300kN, 4000kN, and 4300kN, respectively. By field measurement, the RSSC experienced selection of each coal seam in the Qianjiaying coal mine is unreasonable with low support load utilization. However, after adopting the RSSC suggested selection in each coal seam, the support load utilization increased by 29.07%, 9.6%, 8.57%, 15.33%, and 11.39%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. Topical areas of research needs in ground Control: a state of the art review on coal mine ground control;SS Peng;Journal of China University of Mining & Technology,2015

2. Horizontal stress under supercritical longwall panels;AM Suchowerska;International Journal of Rock Mechanics and Mining Sciences,2014

3. A comprehensive methodology for predicting shield support hazards for a US coal mine;JY Cheng;DYNA,2015

4. Numerical calculations of shield support stress based on laboratory test results;M Witek;Computers and Geotechnics,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3