Tumor growth monitoring in breast cancer xenografts: A good technique for a strong ethic

Author:

Rodallec AnneORCID,Vaghi Cristina,Ciccolini Joseph,Fanciullino Raphaelle,Benzekry SebastienORCID

Abstract

Purpose Although recent regulations improved conditions of laboratory animals, their use remains essential in cancer research to determine treatment efficacy. In most cases, such experiments are performed on xenografted animals for which tumor volume is mostly estimated from caliper measurements. However, many formulas have been employed for this estimation and no standardization is available yet. Methods Using previous animal studies, we compared all formulas used by the scientific community in 2019. Data were collected from 93 mice orthotopically xenografted with human breast cancer cells. All formulas were evaluated and ranked based on correlation and lower mean relative error. They were then used in a Gompertz quantitative model of tumor growth. Results Seven formulas for tumor volume estimation were identified and a statistically significant difference was observed among them (ANOVA test, p < 2.10−16), with the ellipsoid formula (1/6 π × L × W × (L + W)/2) being the most accurate (mean relative error = 0.272 ± 0.201). This was confirmed by the mathematical modeling analysis where this formula resulted in the smallest estimated residual variability. Interestingly, such result was no longer valid for tumors over 1968 ± 425 mg, for which a cubic formula (L x W x H) should be preferred. Main findings When considering that tumor volume remains under 1500mm3, to limit animal stress, improve tumor growth monitoring and go toward mathematic models, the following formula 1/6 π × L × W x (L + W)/2 should be preferred.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference17 articles.

1. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0;NP du Sert;PLOS Biology,2020

2. Communicating About Animal Research with the Public;J MacArthur Clark;ILAR Journal,2019

3. EUROPEAN COMMISSION. 2019 report on the statistics on the use of animals for scientific purposes in the Member States of the European Union in 2015–2017. Brussels, 5.2.2020 COM(2020) 16 final. 5 Feb 2020.

4. Breast cancer animal models and applications;L Zeng;Zool Res,2020

5. The role of mouse tumour models in the discovery and development of anticancer drugs;CR Ireson;British Journal of Cancer,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3