Sampling errors and variability in video transects for assessment of reef fish assemblage structure and diversity

Author:

Bruneel StijnORCID,Ho Long,Van Echelpoel WoutORCID,Schoeters Amber,Raat Heleen,Moens TomORCID,Bermudez Rafael,Luca StijnORCID,Goethals Peter

Abstract

Video monitoring is a rapidly evolving tool in aquatic ecological research because of its non-destructive ability to assess fish assemblages. Nevertheless, methodological considerations of video monitoring techniques are often overlooked, especially in more complex sampling designs, causing inefficient data collection, processing, and interpretation. In this study, we discuss how video transect sampling designs could be assessed and how the inter-observer variability, design errors and sampling variability should be quantified and accounted for. The study took place in the coastal areas of the Galapagos archipelago and consisted of a hierarchical repeated-observations sampling design with multiple observers. Although observer bias was negligible for the assessment of fish assemblage structure, diversity and counts of individual species, sampling variability caused by simple counting/detection errors, observer effects and instantaneous fish displacement was often important. Especially for the counts of individual species, sampling variability most often exceeded the variability of the transects and sites. An extensive part of the variability in the fish assemblage structure was explained by the different transects (13%), suggesting that a sufficiently high number of transects is required to account for the within-location variability. Longer transect lengths allowed a better representation of the fish assemblages as sampling variability decreased by 33% if transect length was increased from 10 to 50 meters. However, to increase precision, including more repeats was typically more efficient than using longer transect lengths. The results confirm the suitability of the technique to study reef fish assemblages, but also highlight the importance of a sound methodological assessment since different biological responses and sampling designs are associated with different levels of sampling variability, precision and ecological relevance. Therefore, besides the direct usefulness of the results, the procedures to establish them may be just as valuable for researchers aiming to optimize their own sampling technique and design.

Funder

VLIR-UOS Biodiversity Network Ecuador

Special Research Fund of UGent

VLIR-UOS Global Minds

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3