Forecasting elections with agent-based modeling: Two live experiments

Author:

Gao Ming,Wang ZhongyuanORCID,Wang Kai,Liu Chenhui,Tang Shiping

Abstract

Election forecasting has been traditionally dominated by subjective surveys and polls or methods centered upon them. We have developed a novel platform for forecasting elections based on agent-based modeling (ABM), which is entirely independent from surveys and polls. The platform uses statistical results from objective data along with simulation models to capture how voters have voted in past elections and how they are likely to vote in an upcoming election. We screen for models that can reproduce results that are very close to the actual results of historical elections and then deploy these selected models to forecast an upcoming election with simulations by combining extrapolated data from historical demographic record and more updated data on economic growth, employment, shock events, and other factors. Here, we report the results of two recent experiments of real-time election forecasting: the 2020 general election in Taiwan and six states in the 2020 general election in the United States. Our mostly objective method using ABM may transform how elections are forecasted and studied.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference28 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3