Advanced machine learning algorithms to evaluate the effects of the raw ingredients on flowability and compressive strength of ultra-high-performance concrete

Author:

Qian Yunfeng,Sufian MuhammadORCID,Accouche OussamaORCID,Azab MarcORCID

Abstract

The estimation of concrete characteristics through artificial intelligence techniques is come out to be an effective way in the construction sector in terms of time and cost conservation. The manufacturing of Ultra-High-Performance Concrete (UHPC) is based on combining numerous ingredients, resulting in a very complex composite in fresh and hardened form. The more ingredients, along with more possible combinations, properties and relative mix proportioning, results in difficult prediction of UHPC behavior. The main aim of this research is the development of Machine Learning (ML) models to predict UHPC flowability and compressive strength. Accordingly, sophisticated and effective artificial intelligence approaches are employed in the current study. For this purpose, an individual ML model named Decision Tree (DT) and ensembled ML algorithms called Bootstrap Aggregating (BA) and Gradient Boosting (GB) are applied. Statistical analyses like; Determination Coefficient (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) are also employed to evaluate algorithms’ performance. It is concluded that the GB approach appropriately forecasts the UHPC flowability and compressive strength. The higher R2 value, i.e., 0.94 and 0.95 for compressive and flowability, respectively, of the DT technique and lesser error values, have higher precision than other considered algorithms with lower R2 values. SHAP analysis reveals that limestone powder content and curing time have the highest SHAP values for UHPC flowability and compressive strength, respectively. The outcomes of this research study would benefit the scholars of the construction industry to quickly and effectively determine the flowability and compressive strength of UHPC.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3