Experimental Investigation and Prediction of Compressive Strength of Ultra-High Performance Concrete Containing Supplementary Cementitious Materials
Author:
Affiliation:
1. Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
2. Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA, UK
Abstract
Funder
China Scholarship Council
Publisher
Hindawi Limited
Subject
General Engineering,General Materials Science
Link
http://downloads.hindawi.com/journals/amse/2017/4563164.pdf
Reference29 articles.
1. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC)
2. Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres
3. Recent advances in understanding the role of supplementary cementitious materials in concrete
4. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete
5. Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method
Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative Analysis of Machine Learning Techniques for Prediction of the Compressive Strength of Field Concrete;Sakarya University Journal of Computer and Information Sciences;2024-08-31
2. A comparative analysis of algorithms on concrete at elevated temperatures;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-08-29
3. Hybrid machine learning approach to prediction of the compressive and flexural strengths of UHPC and parametric analysis with shapley additive explanations;Case Studies in Construction Materials;2024-07
4. Prediction of mechanical properties of high‐performance concrete and ultrahigh‐performance concrete using soft computing techniques: A critical review;Structural Concrete;2024-05-23
5. Improved forecasting of the compressive strength of ultra‐high‐performance concrete (UHPC) via the CatBoost model optimized with different algorithms;Structural Concrete;2024-05-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3