A deep graph convolutional neural network architecture for graph classification

Author:

Zhou Yuchen,Huo Hongtao,Hou Zhiwen,Bu FanliangORCID

Abstract

Graph Convolutional Networks (GCNs) are powerful deep learning methods for non-Euclidean structure data and achieve impressive performance in many fields. But most of the state-of-the-art GCN models are shallow structures with depths of no more than 3 to 4 layers, which greatly limits the ability of GCN models to extract high-level features of nodes. There are two main reasons for this: 1) Overlaying too many graph convolution layers will lead to the problem of over-smoothing. 2) Graph convolution is a kind of localized filter, which is easily affected by local properties. To solve the above problems, we first propose a novel general framework for graph neural networks called Non-local Message Passing (NLMP). Under this framework, very deep graph convolutional networks can be flexibly designed, and the over-smoothing phenomenon can be suppressed very effectively. Second, we propose a new spatial graph convolution layer to extract node multiscale high-level node features. Finally, we design an end-to-end Deep Graph Convolutional Neural Network II (DGCNNII) model for graph classification task, which is up to 32 layers deep. And the effectiveness of our proposed method is demonstrated by quantifying the graph smoothness of each layer and ablation studies. Experiments on benchmark graph classification datasets show that DGCNNII outperforms a large number of shallow graph neural network baseline methods.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3