Identification of high-risk contact areas between feral pigs and outdoor-raised pig operations in California: Implications for disease transmission in the wildlife-livestock interface

Author:

Patterson LauraORCID,Belkhiria Jaber,Martínez-López Beatriz,Pires Alda F. A.ORCID

Abstract

The US is currently experiencing a return to raising domestic pigs outdoors, due to consumer demand for sustainably-raised animal products. A challenge in raising pigs outdoors is the possibility of these animals interacting with feral pigs and an associated risk of pathogen transmission. California has one of the largest and widest geographic distributions of feral pigs. Locations at greatest risk for increased contact between both swine populations are those regions that contain feral pig suitable habitat located near outdoor-raised domestic pigs. The main aim of this study entailed identifying potential high-risk areas of disease transmission between these two swine populations. Aims were achieved by predicting suitable feral pig habitat using Maximum Entropy (MaxEnt); mapping the spatial distribution of outdoor-raised pig operations (OPO); and identifying high-risk regions where there is overlap between feral pig suitable habitat and OPO. A MaxEnt prediction map with estimates of the relative probability of suitable feral pig habitat was built, using hunting tags as presence-only points. Predictor layers were included in variable selection steps for model building. Five variables were identified as important in predicting suitable feral pig habitat in the final model, including the annual maximum green vegetation fraction, elevation, the minimum temperature of the coldest month, precipitation of the wettest month and the coefficient of variation for seasonal precipitation. For the risk map, the final MaxEnt model was overlapped with the location of OPOs to categorize areas at greatest risk for contact between feral swine and domestic pigs raised outdoors and subsequent potential disease transmission. Since raising pigs outdoors is a remerging trend, feral pig numbers are increasing nationwide, and both groups are reservoirs for various pathogens, the contact between these two swine populations has important implications for disease transmission in the wildlife-livestock interface.

Funder

USDA AFRI

Department of Plant Sciences, University of California, Davis

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference103 articles.

1. The United States pork niche market phenomenon;MS Honeyman;J Anim Sci,2014

2. Demand grows for hogs that are raised humanely outdoors—NYTimes.com;Stephanie Strom;New York Times [Internet],2014

3. Farm animal welfare in the context of other society issues: toward sustainable systems;JJ McGlone;Livest Prod Sci,2001

4. Sustainable pork production without confinement becoming a reality—Farming [Internet];T. Scully;Farming Magazine.com,2017

5. Intensive swine production and pork safety;PR Davies;Foodborne Pathog Dis,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3