Ogerin mediated inhibition of TGF-β(1) induced myofibroblast differentiation is potentiated by acidic pH

Author:

Bell Tyler J.ORCID,Nagel David J.,Woeller Collynn F.ORCID,Kottmann R. Mathew

Abstract

Transforming growth factor beta (TGF-β) induced myofibroblast differentiation is central to the pathological scarring observed in Idiopathic Pulmonary Fibrosis (IPF) and other fibrotic diseases. Our lab has recently identified expression of GPR68 (Ovarian Cancer Gene Receptor 1, OGR1), a pH sensing G-protein coupled receptor, as a negative regulator of TGF-β induced profibrotic effects in primary human lung fibroblasts (PHLFs). We therefore hypothesized that small molecule activators of GPR68 would inhibit myofibroblast differentiation. Ogerin is a positive allosteric modulator (PAM) of GPR68, inducing a leftward shift of the dose response curve to proton induced signaling. Using PHLFs derived from patients with both non-fibrotic and IPF diagnoses, we show that Ogerin inhibits, and partially reverses TGF-β induced myofibroblast differentiation in a dose dependent manner. This occurs at the transcriptional level without inhibition of canonical TGF-β induced SMAD signaling. Ogerin induces PKA dependent CREB phosphorylation, a marker of Gαs pathway activation. The ability of Ogerin to inhibit both basal and TGF-β induced collagen gene transcription, and induction of Gαs signaling is enhanced at an acidic pH (pH 6.8). Similar findings were also found using fibroblasts derived from dermal, intestinal, and orbital tissue. The biological role of GPR68 in different tissues, cell types, and disease states is an evolving and emerging field. This work adds to the understanding of Gαs coupled GPCRs in fibrotic lung disease, the ability to harness the pH sensing properties of GPR68, and conserved mechanisms of fibrosis across different organ systems.

Funder

National Institute of Environmental Health Sciences

National Heart, Lung, and Blood Institute

Boehringer Ingelheim

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference124 articles.

1. Cellular and molecular mechanisms of fibrosis;T.A. Wynn;J Pathol,2008

2. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases;T.A. Wynn;The Journal of Clinical Investigation,2007

3. Fibrotic disease and the T(H)1/T(H)2 paradigm.;T.A. Wynn;Nature reviews. Immunology,2004

4. Identifying common genes and networks in multi-organ fibrosis;K.E. Wenzke;AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science,2012

5. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox.;C.B. Nanthakumar;Nat Rev Drug Discov,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3