1. Lampos V, Preoţiuc-Pietro D, Cohn T. A user-centric model of voting intention from Social Media. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. ACL’13; 2013. p. 993–1003. Available from: http://www.aclweb.org/anthology/P13-1098.
2. O’Connor B, Balasubramanyan R, Routledge BR, Smith NA. From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. In: Proceedings of the International AAAI Conference on Weblogs and Social Media; 2010. p. 993–1003.
3. Diakopoulos NA, Shamma DA. Characterizing Debate Performance via Aggregated Twitter Sentiment. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI’10. New York, NY, USA: ACM; 2010. p. 1195–1198. Available from: http://doi.acm.org/10.1145/1753326.1753504.
4. Bollen J, Pepe A, Mao H. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. CoRR. 2009;abs/0911.1583. Available from: http://arxiv.org/abs/0911.1583.
5. Dwi Prasetyo N, Hauff C. Twitter-based Election Prediction in the Developing World. In: Proceedings of the 26th ACM Conference on Hypertext & Social Media. HT’15. New York, NY, USA: ACM; 2015. p. 149–158. Available from: http://doi.acm.org/10.1145/2700171.2791033.