Feature selection for helpfulness prediction of online product reviews: An empirical study
Author:
Publisher
Public Library of Science (PLoS)
Subject
Multidisciplinary
Reference119 articles.
1. BrightLocal. Local Consumer Review Survey; 2016. Available from: https://www.brightlocal.com/learn/local-consumer-review-survey-2016/.
2. Momeni E, Cardie C, Diakopoulos N. How to Assess and Rank User-Generated Content on Web. In: Companion Proceedings of the The Web Conference 2018. WWW’18. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee; 2018. p. 489–493. Available from: https://doi.org/10.1145/3184558.3186239.
3. Askalidis G, Malthouse EC. The Value of Online Customer Reviews. In: Proceedings of the 10th ACM Conference on Recommender Systems. RecSys’16. New York, NY, USA: ACM; 2016. p. 155–158. Available from: http://doi.acm.org/10.1145/2959100.2959181.
4. Ocampo Diaz G, Ng V. Modeling and Prediction of Online Product Review Helpfulness: A Survey. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics; 2018. p. 698–708. Available from: http://www.aclweb.org/anthology/P18-1065.
5. Kim SM, Pantel P, Chklovski T, Pennacchiotti M. Automatically Assessing Review Helpfulness. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. EMNLP’06. Stroudsburg, PA, USA: Association for Computational Linguistics; 2006. p. 423–430. Available from: http://dl.acm.org/citation.cfm?id=1610075.1610135.
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Identification of significant features and machine learning technique in predicting helpful reviews;PeerJ Computer Science;2024-01-23
2. Artificial Eye: Online Video Browsing Guide for Visually Impaired;Communications in Computer and Information Science;2024
3. Review helpfulness prediction on e-commerce websites: A comprehensive survey;Engineering Applications of Artificial Intelligence;2023-11
4. Revisiting review helpfulness prediction: An advanced deep learning model with multimodal input from Yelp;International Journal of Hospitality Management;2023-09
5. A Novel Review Helpfulness Measure Based on the User-Review-Item Paradigm;ACM Transactions on the Web;2023-07-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3