Wound healing potential of Cystoseira/mesenchymal stem cells in immunosuppressed rats supported by overwhelming immuno-inflammatory crosstalk

Author:

Zahran Eman MaherORCID,Mohyeldin Reham H.ORCID,Abd El-Mordy Fatma MohamedORCID,Maher Sherif A.,Abdel-Maqsoud Nehad M. Reda,Altemani Faisal H.,Algehainy Naseh A.,Alanazi Mohammed A.,Jalal Mohammed M.ORCID,Elrehany Mahmoud A.,Bringmann Gerhard,Abdelmohsen Usama Ramadan

Abstract

Wound healing, one of the most intricate and dynamic processes of the body, maintains skin integrity following trauma. One of the main issues that still exists is impaired wound healing, particularly for immunosuppressed patients. Recently, natural products from marine environments have been employed in wound-repairing activities. This work investigates the mesenchymal stem cells in the combined capacity of the bone marrow (BMMSC) for wound healing and Cystoseira sp. Algae extract in immunosuppressed rats. High-resolution liquid chromatography / MS investigation of Cystoseira extract revealed the prevalence of fatty acids that have wound-soothing potential. From constructed PPI network for wound healing and further analysis through molecular docking and molecular dynamics (MD) simulation experiments suggested that cystalgerone metabolite may be responsible for the wound healing-promoting effect of Cystoseira extract. According to the CD marker characterization of the BMMSC, 98.21% of them expressed CD90, and 97.1% expressed CD105. Sixteen d after immunity suppression (by 40 mg/kg hydrocortisone daily), an incision was made in the dorsal skin of the rat. The treatments were applied for 16 d and samples were taken from the tested groups on the 8th, 14th, and 16th days. The BMMSCs / Cystoseira group showed significantly improved wound closure, thickness, density of new layers, and skin elasticity than the control group (p < 0.001). The BMMSCs / Cystoseira combination significantly reduced the oxidative indicators, pro-inflammatory cytokines, and immune markers, according to the RT-PCR gene expression study. In order to delve deeper into the complex interconnections among wound healing-related biological targets and pinpoint key factors in this complex process, we engaged in network pharmacology and computational research. Subsequently, we conducted a comprehensive computational analysis, including reverse docking, free energy (ΔG) computation, and molecular dynamics simulations, on the molecular structures of the annotated compounds. The purpose of this investigation was to identify potential new targets for these chemicals as well as any potential interactions they may have with different signaling pathways related to the wound healing process. Our research indicates that the primary compounds of Cystoseira holds potential wound healing therapeutic activity. Although more safety testing and clinical studies are required, the combination has great potential for regenerative medicine and could be a revolutionary advance in the healing of the wounds of immunosuppressed patients.

Publisher

Public Library of Science (PLoS)

Reference63 articles.

1. Wallace H, Basehore B, Zito PJSTISP. Wound Healing Phases.[Updated 2021 Nov 15]. 2022.

2. Factors that impair wound healing;K Anderson;JJotACoCWS,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3