GNViT- An enhanced image-based groundnut pest classification using Vision Transformer (ViT) model

Author:

P. Venkatasaichandrakanth,M. IyapparajaORCID

Abstract

Crop losses caused by diseases and pests present substantial challenges to global agriculture, with groundnut crops particularly vulnerable to their detrimental effects. This study introduces the Groundnut Vision Transformer (GNViT) model, a novel approach that harnesses a pre-trained Vision Transformer (ViT) on the ImageNet dataset. The primary goal is to detect and classify various pests affecting groundnut crops. Rigorous training and evaluation were conducted using a comprehensive dataset from IP102, encompassing pests such as Thrips, Aphids, Armyworms, and Wireworms. The GNViT model’s effectiveness was assessed using reliability metrics, including the F1-score, recall, and overall accuracy. Data augmentation with GNViT resulted in a significant increase in training accuracy, achieving 99.52%. Comparative analysis highlighted the GNViT model’s superior performance, particularly in accuracy, compared to state-of-the-art methodologies. These findings underscore the potential of deep learning models, such as GNViT, in providing reliable pest classification solutions for groundnut crops. The deployment of advanced technological solutions brings us closer to the overarching goal of reducing crop losses and enhancing global food security for the growing population.

Publisher

Public Library of Science (PLoS)

Reference50 articles.

1. Green revolution: Impacts, limits, and the path ahead;P.L. Pingali;Proc. Natl. Acad. Sci. USA,2012

2. Climate change, agricultural development, and migration;P. Martin;Climate change, agricultural development, and migration,2010

3. Peanuts as functional food: a review;S. S. Arya;J. Food Sci. Technol,2016

4. A Groundnut Insect Identification Handbook for India;J. A. Wightman;Information Bulletin No. 39, International Crops Research Institute for the Semi-Arid Tropics,1993

5. Effect of high temperature and water stress on groundnuts under field conditions;V. G. Kakani;Combined Stresses in Plants: Physiological, Molecular, and Biochemical Aspects,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3