Abstract
Many individual studies in the literature observed the superiority of tree-based machine learning (ML) algorithms. However, the current body of literature lacks statistical validation of this superiority. This study addresses this gap by employing five ML algorithms on 200 open-access datasets from a wide range of research contexts to statistically confirm the superiority of tree-based ML algorithms over their counterparts. Specifically, it examines two tree-based ML (Decision tree and Random forest) and three non-tree-based ML (Support vector machine, Logistic regression and k-nearest neighbour) algorithms. Results from paired-sample t-tests show that both tree-based ML algorithms reveal better performance than each non-tree-based ML algorithm for the four ML performance measures (accuracy, precision, recall and F1 score) considered in this study, each at p<0.001 significance level. This performance superiority is consistent across both the model development and test phases. This study also used paired-sample t-tests for the subsets of the research datasets from disease prediction (66) and university-ranking (50) research contexts for further validation. The observed superiority of the tree-based ML algorithms remains valid for these subsets. Tree-based ML algorithms significantly outperformed non-tree-based algorithms for these two research contexts for all four performance measures. We discuss the research implications of these findings in detail in this article.
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献