Ridge planting increases the rhizosphere microbiome diversity and improves the yield of Pinellia ternata (Thunb.) Breit in North China

Author:

Li YaofaORCID,An Jingjie,Guo Jianglong,Dang Zhihong,Gao ZhanlinORCID

Abstract

Pinellia ternata (Thunb.) Breit is an important traditional Chinese medicine. In North China, conventional flat planting of P. ternate is prone to root rot during the rainy season, leading to severe yield loss. Variations in planting patterns (e.g., ridge planting) can effectively alleviate this situation. However, the relationship between planting patterns and the changes induced by rhizosphere microbiome still needs to be determined. In this study, we clarified the effect of ridge planting on the yield of P. ternata and rhizosphere microbial community using high-throughput amplicon sequencing of 16S rRNA. Field experiments showed that ridge planting could increase the yield of P. ternata by 72.69% compared with flat planting. The high-throughput sequencing results demonstrated that fungal and bacterial communities in rhizosphere siols of flat and ridge planting showed obvious difference in diversity, structure, relative abundance, and community composition. The fungal phyla Zygomycota, Basidiomycota, Glomeromycota, and the bacterial phyla Chlamydiae, Tenericutes, and Hydrogenedentes were present in a higher relative abundance in the rhizosphere of ridge planting. Adonis multivariate analysis of variance results showed that 29 bacterial genera were significantly up/down-regulated, and only 4 fungal genera were changed considerably in ridge planting soil, indicating that the bacterial community composition varied significantly between the two treatments. Correlation analysis revealed that the yield of P. ternata was positively correlated with fungal genera Emericellopsis while negatively correlated with bacterial genera Acetobacter, Iamia, and fungal genera Thielavia. Overall, this study showed that ridge cropping significantly impacts the diversity and composition of the rhizosphere microbiome. It creates an environment favorable for crop growth and can be an effective planting strategy for P. ternata in areas with irrigation and high monsoon rainfall in North China.

Funder

the Earmarked Fund for Hebei Modern Agro-industry Technology Research System

HAAFS Agriculture Science and Technology Innovation Project

Publisher

Public Library of Science (PLoS)

Reference53 articles.

1. Growing importance of natural products research;PB Drasar;Molecules,2020

2. Xu YH, Liang BW, Kong CC, Sun ZG. Traditional medicinal plants as a source of antituberculosis drugs: a system review. BioMed Res. Int. 2021; 9910365.

3. An anti-emetic principle of Pinellia ternata tuber;T Maki;Planta Med,1987

4. Research progresses of pharmacological actions in antimicrobial, anti-inflammation and antitumor of extract from Pinelliae Rhizoma;MF Zhang;Anti-infection pharmacy,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3