Enhancing polytetrafluoroethylene (PTFE) coated film for food processing: Unveiling surface transformations through oxygenated plasma treatment and parameter optimization using response surface methodology

Author:

Abidin Noraziani Zainal,Hashim Haslaniza,Zubairi Saiful IrwanORCID,Maskat Mohamad Yusof,Purhanudin Noorain,Awang Rozidawati,Ali Jarinah Mohd,Yaakob Harisun

Abstract

Spray drying fruit juice powders poses challenges because sugars and organic acids with low molecular weight and a low glass transition temperature inherently cause stickiness. This study employed a hydrophobic polytetrafluoroethylene (PTFE) film to mimic the surface of the drying chamber wall. The Central Composite Design (CCD) using response surface methodology investigated the impact of power (X1, Watt) and the duration of oxygenated plasma treatment (X2, minutes) on substrate contact angle (°), reflecting surface hydrophobicity. To validate the approach, Morinda citrofolia (MC) juice, augmented with maltodextrins as drying agents, underwent spray drying on the improved PTFE-coated surface. The spray drying process for MC juice was performed at inlet air temperatures of 120, 140, and 160°C, along with Noni juice-to-maltodextrin solids ratios of 4.00, 1.00, and 0.25. The PTFE-coated borosilicate substrate, prepared at a radio frequency (RF) power of 90W for 15 minutes of treatment time, exhibited a porous and spongy microstructure, correlating with superior contact angle performance (171°) compared to untreated borosilicate glass. Optimization data indicated that the PTFE film attained an optimum contact angle of 146.0° with a specific combination of plasma RF operating power (X1 = 74 W) and treatment duration (X2 = 10.0 minutes). RAMAN spectroscopy indicated a structural analysis with an ID/IG ratio of 0.2, while Brunauer-Emmett-Teller (BET) surface area analysis suggested an average particle size of less than 100 nm for all coated films. The process significantly improved the powder’s hygroscopicity, resistance to caking, and moisture content of maltodextrin-MC juice. Therefore, the discovery of this modification, which applies oxygen plasma treatment to PTFE-coated substrates, effectively enhances surface hydrophobicity, contact angle, porosity, roughness, and ultimately improves the efficacy and recovery of the spray drying process.

Funder

Universiti Kebangsaan Malaysia

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3