Smartphone region-wise image indoor localization using deep learning for indoor tourist attraction

Author:

Hirokawa Higa Gabriel ToshioORCID,Stuqui Monzani Rodrigo,da Silva Cecatto Jorge Fernando,Balestieri Mariano de Souza Maria Fernanda,de Moraes Weber Vanessa AparecidaORCID,Pistori HemersonORCID,Matsubara Edson TakashiORCID

Abstract

Smart indoor tourist attractions, such as smart museums and aquariums, require a significant investment in indoor localization devices. The use of Global Positioning Systems on smartphones is unsuitable for scenarios where dense materials such as concrete and metal blocks weaken GPS signals, which is most often the case in indoor tourist attractions. With the help of deep learning, indoor localization can be done region by region using smartphone images. This approach requires no investment in infrastructure and reduces the cost and time needed to turn museums and aquariums into smart museums or smart aquariums. In this paper, we propose using deep learning algorithms to classify locations based on smartphone camera images for indoor tourist attractions. We evaluate our proposal in a real-world scenario in Brazil. We extensively collect images from ten different smartphones to classify biome-themed fish tanks in the Pantanal Biopark, creating a new dataset of 3654 images. We tested seven state-of-the-art neural networks, three of them based on transformers. On average, we achieved a precision of about 90% and a recall and f-score of about 89%. The results show that the proposal is suitable for most indoor tourist attractions.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3