Innovative AI methods for monitoring front-of-package information: A case study on infant foods

Author:

Kim Dohee,Kim Seo-YoungORCID,Yoo Ra,Choo Jaegul,Yang HeeORCID

Abstract

Front-of-package (FOP) is one of the most direct communication channels connecting manufacturers and consumers, as it displays crucial information such as certification, nutrition, and health. Traditional methods for obtaining information from FOPs often involved manual collection and analysis. To overcome these labor-intensive characteristics, new methods using two artificial intelligence (AI) approaches were applied for information monitoring of FOPs. In order to provide practical implementations, a case study was conducted on infant food products. First, FOP images were collected from Amazon.com. Then, from the FOP images, 1) the certification usage status of the infant food group was obtained by recognizing the certification marks using object detection. Moreover, 2) the nutrition and health-related texts written on the images were automatically extracted based on optical character recognition (OCR), and the associations between health-related texts were identified by network analysis. The model attained a 94.9% accuracy in identifying certification marks, unveiling prevalent certifications like Kosher. Frequency and network analysis revealed common nutrients and health associations, providing valuable insights into consumer perception. These methods enable fast and efficient monitoring capabilities, which can significantly benefit various food industries. Moreover, the AI-based approaches used in the study are believed to offer insights for related industries regarding the swift transformations in product information status.

Funder

Ministry of Food and Drug Safety

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

Publisher

Public Library of Science (PLoS)

Reference59 articles.

1. Effect of front-of-package labels on consumer product evaluation and preferences.;C Oswald;Curr Res food Sci,2022

2. Effects of front-of-package and shelf nutrition labeling systems on consumers.;JC Hersey;Nutr Rev.,2013

3. Front-of-package food labels: A narrative review;NJ Temple;Appetite,2020

4. The Changing Food Label: The Nutrition Labeling and Education Act of 1990.;EF Greenberg;Loyola Consum Law Report.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3