A Hybrid convolution neural network for the classification of tree species using hyperspectral imagery

Author:

Wang JianORCID,Jiang Yongchang

Abstract

In recent years, the advancement of hyperspectral remote sensing technology has greatly enhanced the detailed mapping of tree species. Nevertheless, delving deep into the significance of hyperspectral remote sensing data features for tree species recognition remains a challenging endeavor. The method of Hybrid-CS was proposed to addresses this challenge by synergizing the strengths of both deep learning and traditional learning techniques. Initially, we extract comprehensive correlation structures and spectral features. Subsequently, a hybrid approach, combining correlation-based feature selection with an optimized recursive feature elimination algorithm, identifies the most valuable feature set. We leverage the Support Vector Machine algorithm to evaluate feature importance and perform classification. Through rigorous experimentation, we evaluate the robustness of hyperspectral image-derived features and compare our method with other state-of-the-art classification methods. The results demonstrate: (1) Superior classification accuracy compared to traditional machine learning methods (e.g., SVM, RF) and advanced deep learning approaches on the tree species dataset. (2) Enhanced classification accuracy achieved by incorporating SVM and CNN information, particularly with the integration of attention mechanisms into the network architecture. Additionally, the classification performance of a two-branch network surpasses that of a single-branch network. (3) Consistent high accuracy across different proportions of training samples, indicating the stability and robustness of the method. This study underscores the potential of hyperspectral images and our proposed methodology for achieving precise tree species classification, thus holding significant promise for applications in forest resource management and monitoring.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3