Agro Climatic Zoning of Saffron Culture in Miyaneh City by Using WLC Method and Remote Sensing Data

Author:

Zamani Ali,Sharifi AlirezaORCID,Felegari Shilan,Tariq AqilORCID,Zhao NaORCID

Abstract

Recent continuous droughts and decreasing ground water tables have prompted efforts to improve irrigation schedules and introduce crops that need less water. A study was recently conducted to determine suitable zones for saffron in Miyaneh using Landsat-8 images and the weighted linear combination (WLC) method. Climatic and geographical indices for saffron cultivation in the region were for soil type, slope, soil moisture, and soil salinity. Parameters such as 30 years of data on climate, soil, and water conditions were collected from synoptic and climatologic stations such as Tabriz. Then, parameters were weighted using WLC for importance in each region. The data were transferred to expert choice and clustered, rated, and integrated to produce the last layer. The results showed that the southeastern and northwestern regions of Miyaneh, especially the banks of rivers and catchments, were identified as suitable places for saffron cultivation and that 28% of the area is in the suitable class, 36% in the relatively moderately suitable class, 20% in the critical suitability class, and the rest of the area, which covers about 16% of the area, is in the non-suitable class. Therefore, if it is possible to identify favorable areas for saffron cultivation according to the climatic requirements and it is possible in practice to achieve higher performance per unit area, that in itself will contribute to improved economic conditions and levels of income for farmers. Due to the special characteristics of saffron, substituting it for the cultivation of crops with high water requirements, such as onions, potatoes, tomatoes, etc., will help reduce water consumption.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3