Identification and classification of surface defects for digital twin models of the workpiece

Author:

Qu LigangORCID,Huang Xuesong,Zhang Danya,Chen Zeng

Abstract

Workpiece surface defect detection is an indispensable part of intelligent production. The surface information obtained by traditional 2D image detection has some limitations due to the influence of environmental light factors and part complexity. However, the digital twin model has the characteristics of high fidelity and scalability, and the digital twin surface can be obtained by a device with a scanning accuracy of 0.02mm to achieve the representation of the real surface of the workpiece. The surface defect detection system for digital twin models is proposed based on the improved YOLOv5 model in this paper. Firstly, the digital twin model of the workpiece is reconstructed by the point cloud data obtained by the scanning device, and the surface features with defects are captured. Subsequently, the training dataset is calibrated based on the defect surface, where the defect types include Inclusion, Perforation, pitting surface and Rolled-in scale. Finally, the improved YOLOv5 model with CBAM mechanism and BiFPN module was used to identify the surface defects of the digital twin model and compare it with the original YOLOv5 model and other common models. The results show that the improved YOLOv5 model can realize the identification and classification of surface defects. Compared with the original YOLOv5 model, the mAP value of the improved YOLOv5 model has increased by 0.2%, and the model has high precision. On the basis of the same data set, the improved YOLOv5 model has higher recognition accuracy than other models, improving 11.7%, 3.4%, 6.2%, 33.5%, respectively. As a result, this study provides a practical and systematic detection method for digital twin model surface during the intelligent production process, and realizes the rapid screening of the workpiece with defects.

Funder

Applied basic research program of Science and Technology Department of Liaoning Province

Publisher

Public Library of Science (PLoS)

Reference29 articles.

1. Surface Defect Detection Methods for Industrial Products: A Review.;Y Chen;Applied Sciences.,2021

2. Free-form surface inspection techniques state of the art review.;Y Li;Computer-Aided Design,2004

3. Precision inspection system for aircraft parts having very thin features based on CAD/CAI integration;HJ Pahk;International Journal of Advanced Manufacturing Technology,1996

4. Review: Research on product surface quality inspection technology based on 3D point cloud.;L Huo;Advances in Mechanical Engineering,2023

5. Measurement methods of 3D shape of large-scale complex surfaces based on computer vision: A review.;H Shang;Measurement,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3