Kinematics and workspace analysis of 4SPRR-SPR parallel robots

Author:

Luo LanORCID,Hou Li,Zhang Qi,Wei Yongqiao,Wu Yang

Abstract

The 4SPRR-SPR parallel robot, which has considerable potential for application in the field of machining, is a novel closed-loop mechanism with a high rigid-weight ratio. Kinematics and workspace analyses of the 4SPRR-SPR parallel robot are key requirements for its application in machining. In this study, the inverse kinematics of the 4SPRR-SPR parallel robot is analyzed using a geometric method based on the mechanism arrangement of the robot. The forward kinematics model is derived by training the vector-quantified temporal associative memory (VQTAM) network, which originates from a self-organizing map (SOM). Furthermore, an improved algorithm is obtained by combining the locally linear embedding (LLE) and VQTAM methods. A boundary extraction algorithm for the workspace analysis of the parallel robot is proposed. The performance of the boundary extraction algorithm is analyzed and compared with that of a global search algorithm; the result indicates that the novel algorithm has the same computational accuracy in addition to higher efficiency. The workspace of the 4SPRR-SPR parallel robot is analyzed using the boundary extraction algorithm. Finally, the 3D model of the 4SPRR-SPR parallel robot is simulated using the ADAMS software to verify the reliability of the proposed algorithms. The simulation results demonstrate the effectiveness of the methods proposed in this study. In addition, the robot kinematics and workspace analysis methods described herein can be extended to other serial and parallel robots. This research provides a theoretical framework for trajectory planning of mechanisms, workspace optimization of robots, and robotic control.

Funder

National Natural Science Foundation of China

Economic and Information Commission of Sichuan Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. A novel 5-DOF fully parallel kinematic machine tool;F Gao;Int. J. Adv Manuf Technol,2006

2. A platform with six degrees of freedom;D Stewart;P I Mech. Eng,1965

3. A comparison study on motion/force transmissibility of two typical 3-DOF parallel manipulators: the sprint Z3 and A3 tool heads;X Chen;Int. J Adv. Robot Syst,2014

4. Structural synthesis for a lower‑mobility parallel kinematic machine with swivel hinges;H Xie;Robotics and Computer‑Integrated Manufacturing,2014

5. Type synthesis of symmetrical lower‑mobility parallel mechanisms using the constraint‑synthesis method;Z Huang;The International Journal of Robotics Research,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3