Abstract
We propose a developmental model inspired by the cortico-basal system (CX-BG) for vocal learning in babies and for solving the correspondence mismatch problem they face when they hear unfamiliar voices, with different tones and pitches. This model is based on the neural architecture INFERNO standing for Iterative Free-Energy Optimization of Recurrent Neural Networks. Free-energy minimization is used for rapidly exploring, selecting and learning the optimal choices of actions to perform (eg sound production) in order to reproduce and control as accurately as possible the spike trains representing desired perceptions (eg sound categories). We detail in this paper the CX-BG system responsible for linking causally the sound and motor primitives at the order of a few milliseconds. Two experiments performed with a small and a large audio database show the capabilities of exploration, generalization and robustness to noise of our neural architecture in retrieving audio primitives during vocal learning and during acoustic matching with unheared voices (different genders and tones).
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics
Reference85 articles.
1. Early language acquisition: cracking the speech code;PK Kuhl;Nature reviews neuroscience,2004
2. Rhythms of the Brain
3. The “working” of working memory;E Miller;Dialogues Clin Neurosci,2015
4. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation;O Civier;Brain and Language,2013
5. Modeling Early Vocal Development Through Infant–Caregiver Interaction: A Review;M Asada;IEEE TCDS,2016
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献