Deconvolution of heterogeneous tumor samples using partial reference signals

Author:

Qin YufangORCID,Zhang Weiwei,Sun XiaoqiangORCID,Nan Siwei,Wei NanaORCID,Wu Hua-JunORCID,Zheng XiaoqiORCID

Abstract

Deconvolution of heterogeneous bulk tumor samples into distinct cellular populations is an important yet challenging problem, particularly when only partial references are available. A common approach to dealing with this problem is to deconvolve the mixed signals using available references and leverage the remaining signal as a new cell component. However, as indicated in our simulation, such an approach tends to over-estimate the proportions of known cell types and fails to detect novel cell types. Here, we propose PREDE, a partial reference-based deconvolution method using an iterative non-negative matrix factorization algorithm. Our method is verified to be effective in estimating cell proportions and expression profiles of unknown cell types based on simulated datasets at a variety of parameter settings. Applying our method to TCGA tumor samples, we found that proportions of pure cancer cells better indicate different subtypes of tumor samples. We also detected several cell types for each cancer type whose proportions successfully predicted patient survival. Our method makes a significant contribution to deconvolution of heterogeneous tumor samples and could be widely applied to varieties of high throughput bulk data. PREDE is implemented in R and is freely available from GitHub (https://xiaoqizheng.github.io/PREDE).

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Shanghai Science and Technology Innovation Action Plan

Science and Technology Research Project of Jiangxi Education Department

Guangdong Basic and Applied Basic Research Foundation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3