GLDADec: marker-gene guided LDA modeling for bulk gene expression deconvolution

Author:

Azuma Iori1,Mizuno Tadahaya1ORCID,Kusuhara Hiroyuki1

Affiliation:

1. Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1, Bunkyo-ku 113-0033 , Japan

Abstract

Abstract Inferring cell type proportions from bulk transcriptome data is crucial in immunology and oncology. Here, we introduce guided LDA deconvolution (GLDADec), a bulk deconvolution method that guides topics using cell type-specific marker gene names to estimate topic distributions for each sample. Through benchmarking using blood-derived datasets, we demonstrate its high estimation performance and robustness. Moreover, we apply GLDADec to heterogeneous tissue bulk data and perform comprehensive cell type analysis in a data-driven manner. We show that GLDADec outperforms existing methods in estimation performance and evaluate its biological interpretability by examining enrichment of biological processes for topics. Finally, we apply GLDADec to The Cancer Genome Atlas tumor samples, enabling subtype stratification and survival analysis based on estimated cell type proportions, thus proving its practical utility in clinical settings. This approach, utilizing marker gene names as partial prior information, can be applied to various scenarios for bulk data deconvolution. GLDADec is available as an open-source Python package at https://github.com/mizuno-group/GLDADec.

Funder

JSPS KAKENHI

Japan Society for the Promotion of Science

Takeda Science Foundation

Mochida Memorial Foundation for Medical and Pharmaceutical Research

Publisher

Oxford University Press (OUP)

Reference51 articles.

1. Drug-induced hepatotoxicity;Lee;N Engl J Med,2003

2. Tumors as organs: complex tissues that Interface with the entire organism;Egeblad;Dev Cell,2010

3. The gene expression omnibus;Clough;Database,2016

4. The genotype-tissue expression (GTEx) project;Lonsdale;Nat Genet,2013

5. Massive mining of publicly available RNA-seq data from human and mouse;Lachmann;Nat Commun,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3