Secondary indoor air pollution and passive smoking associated with cannabis smoking using electric cigarette device–demonstrative in silico study

Author:

Kuga KazukiORCID,Ito KazuhideORCID,Chen WenhaoORCID,Wang PingORCID,Fowles Jeff,Kumagai KazukiyoORCID

Abstract

With electronic (e)-liquids containing cannabis components easily available, many anecdotal examples of cannabis vaping using electronic cigarette devices have been reported. For electronic cigarette cannabis vaping, there are potential risks of secondary indoor air pollution from vapers. However, quantitative and accurate prediction of the inhalation and dermal exposure of a passive smoker in the same room is difficult to achieve due to the ethical constraints on subject experiments. The numerical method, i.e., in silico method, is a powerful tool to complement these experiments with real humans. In this study, we adopted a computer-simulated person that has been validated from multiple perspectives for prediction accuracy. We then conducted an in silico study to elucidate secondary indoor air pollution and passive smoking associated with cannabis vaping using an electronic cigarette device in an indoor environment. The aerosols exhaled by a cannabis vaper were confirmed to be a secondary emission source in an indoor environment; non-smokers were exposed to these aerosols via respiratory and dermal pathways. Tetrahydrocannabinol was used as a model chemical compound for the exposure study. Its uptake by the non-smoker through inhalation and dermal exposure under a worst-case scenario was estimated to be 5.9% and 2.6% of the exhaled quantity from an e-cigarette cannabis user, respectively.

Funder

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3