Abstract
The COVID-19 epidemic has forced most countries to impose contact-limiting restrictions at workplaces, universities, schools, and more broadly in our societies. Yet, the effectiveness of these unprecedented interventions in containing the virus spread remain largely unquantified. Here, we develop a simulation study to analyze COVID-19 outbreaks on three real-life contact networks stemming from a workplace, a primary school and a high school in France.
Our study provides a fine-grained analysis of the impact of contact-limiting strategies at workplaces, schools and high schools, including: (1) Rotating strategies, in which workers are evenly split into two shifts that alternate on a daily or weekly basis; and (2) On-Off strategies, where the whole group alternates periods of normal work interactions with complete telecommuting. We model epidemics spread in these different setups using a stochastic discrete-time agent-based transmission model that includes the coronavirus most salient features: super-spreaders, infectious asymptomatic individuals, and pre-symptomatic infectious periods. Our study yields clear results: the ranking of the strategies, based on their ability to mitigate epidemic propagation in the network from a first index case, is the same for all network topologies (workplace, primary school and high school). Namely, from best to worst: Rotating week-by-week, Rotating day-by-day, On-Off week-by-week, and On-Off day-by-day. Moreover, our results show that below a certain threshold for the original local reproduction number R 0 l o c a l within the network (< 1.52 for primary schools, < 1.30 for the workplace, < 1.38 for the high school, and < 1.55 for the random graph), all four strategies efficiently control outbreak by decreasing effective local reproduction number to R 0 l o c a l < 1. These results can provide guidance for public health decisions related to telecommuting.
Funder
fondation de france
université paris-saclay
Ministère de l’Enseignement Supérieur, de la Recherche, de la Science et de la Technologie
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Reference42 articles.
1. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy;G Giordano;Nature Medicine,2020
2. Malani A, Soman S, Asher S, Novosad P, Imbert C, Tandel V, et al. Adaptive control of COVID-19 outbreaks in India: Local, gradual, and trigger-based exit paths from lockdown. National Bureau of Economic Research; 2020.
3. Ely J, Galeotti A, Steiner J. Rotation as Contagion Mitigation. CEPR Discussion Paper No DP14953. 2020.
4. Can the COVID-19 Epidemic Be Controlled on the Basis of Daily Test Reports?;F Casella;IEEE Control Systems Letters,2021
5. A network model of Italy shows that intermittent regional strategies can alleviate the COVID-19 epidemic;F Della Rossa;Nature Communications,2020
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献