On the influence of prior information evaluated by fully Bayesian criteria in a personalized whole-brain model of epilepsy spread

Author:

Hashemi MeysamORCID,Vattikonda Anirudh N.ORCID,Sip ViktorORCID,Diaz-Pier SandraORCID,Peyser AlexanderORCID,Wang HuifangORCID,Guye MaximeORCID,Bartolomei Fabrice,Woodman Marmaduke M.,Jirsa Viktor K.ORCID

Abstract

Individualized anatomical information has been used as prior knowledge in Bayesian inference paradigms of whole-brain network models. However, the actual sensitivity to such personalized information in priors is still unknown. In this study, we introduce the use of fully Bayesian information criteria and leave-one-out cross-validation technique on the subject-specific information to assess different epileptogenicity hypotheses regarding the location of pathological brain areas based on a priori knowledge from dynamical system properties. The Bayesian Virtual Epileptic Patient (BVEP) model, which relies on the fusion of structural data of individuals, a generative model of epileptiform discharges, and a self-tuning Monte Carlo sampling algorithm, is used to infer the spatial map of epileptogenicity across different brain areas. Our results indicate that measuring the out-of-sample prediction accuracy of the BVEP model with informative priors enables reliable and efficient evaluation of potential hypotheses regarding the degree of epileptogenicity across different brain regions. In contrast, while using uninformative priors, the information criteria are unable to provide strong evidence about the epileptogenicity of brain areas. We also show that the fully Bayesian criteria correctly assess different hypotheses about both structural and functional components of whole-brain models that differ across individuals. The fully Bayesian information-theory based approach used in this study suggests a patient-specific strategy for epileptogenicity hypothesis testing in generative brain network models of epilepsy to improve surgical outcomes.

Funder

Agence Nationale de la Recherche

Human Brain Project SGA2 and SGA3

European Union’s Horizon 2020 Framework Programme for Research and Innovation

VirtualBrainCloud

PHRC-I 2013 EPISODIUM

Fondation Générale de Santé

SATT Sud-Est

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference108 articles.

1. Raftery A. Bayesian Model Selection in Social Research (with Discussion by Andrew Gelman & Donald B. Rubin, and Robert M. Hauser, and a Rejoinder); 1995.

2. Comparison of Bayesian predictive methods for model selection;J Piironen;Statistics and Computing,2017

3. Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia;M Hashemi;Neuroinformatics,2018

4. The Bayesian Virtual Epileptic Patient: a probabilistic framework designed to infer the spatial map of excitability in a personalized large-scale brain model generating epileptic seizures;M Hashemi;NeuroImage,2020

5. Dynamic causal modelling;KJ Friston;NeuroImage,2003

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3