Effects of the spatial resolution of the Virtual Epileptic Patient on the identification of epileptogenic networks

Author:

Lemaréchal Jean-Didier1,Triebkorn Paul1,Vattikonda Anirudh Nihalani1,Hashemi Meysam1,Woodman Marmaduke1,Guye Maxime23,Bartolomei Fabrice14,Wang Huifang E.1,Jirsa Viktor1

Affiliation:

1. Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille, France

2. Aix-Marseille Université, CNRS, CRMBM, Marseille, France

3. APHM, Timone University Hospital, CEMEREM, Marseille, France

4. APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France

Abstract

Abstract Digital twins play an increasing role in clinical decision making. This study evaluates a digital brain twin approach in presurgical evaluation, the Virtual Epileptic Patient (VEP), which estimates the epileptogenic zone in patients with drug-resistant epilepsy. We built the personalized digital brain twins of 14 patients and a series of synthetic dataset by considering different spatial configurations of the epileptogenic and/or propagation zone networks (EZN and PZN, respectively). Brain source signals were simulated with a high spatial resolution neural field model (NFM) composed of 81942 nodes, embedding both long-range (between brain regions) and short-range (within brain regions) coupling. Brain signals were then projected to stereotactic electroencephalographic (SEEG) contacts with an accurate forward solution. An inversion procedure based on a low spatial resolution neural mass model (NMM) composed of 162 nodes was applied to estimate the excitability of each region in each simulation. The ensuing estimated EZN/PZN was compared to the simulated ground truth by means of classification metrics. Overall, we observed correct but degraded performance when using an NMM to estimate the EZN from data simulated with an NFM, which was significant for the simplest spatial configurations. We quantified the reduced performance and demonstrated that the oversimplification of the forward problem is its principal cause. We showed that the absence of local coupling in the NMM affects the inversion process by an overestimation of the excitability, representing a significant clinical impact when using this procedure in the context of presurgical planning. In conclusion, this study highlighted the importance to shift from an NMM towards a full NFM modeling approach for the estimation of EZN, with a particularly relevant need when considering the most complex clinical cases.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3