Uncertainty quantification and sensitivity analysis of COVID-19 exit strategies in an individual-based transmission model

Author:

Gugole FedericaORCID,Coffeng Luc E.ORCID,Edeling Wouter,Sanderse BenjaminORCID,de Vlas Sake J.ORCID,Crommelin DaanORCID

Abstract

Many countries are currently dealing with the COVID-19 epidemic and are searching for an exit strategy such that life in society can return to normal. To support this search, computational models are used to predict the spread of the virus and to assess the efficacy of policy measures before actual implementation. The model output has to be interpreted carefully though, as computational models are subject to uncertainties. These can stem from, e.g., limited knowledge about input parameters values or from the intrinsic stochastic nature of some computational models. They lead to uncertainties in the model predictions, raising the question what distribution of values the model produces for key indicators of the severity of the epidemic. Here we show how to tackle this question using techniques for uncertainty quantification and sensitivity analysis. We assess the uncertainties and sensitivities of four exit strategies implemented in an agent-based transmission model with geographical stratification. The exit strategies are termed Flattening the Curve, Contact Tracing, Intermittent Lockdown and Phased Opening. We consider two key indicators of the ability of exit strategies to avoid catastrophic health care overload: the maximum number of prevalent cases in intensive care (IC), and the total number of IC patient-days in excess of IC bed capacity. Our results show that uncertainties not directly related to the exit strategies are secondary, although they should still be considered in comprehensive analysis intended to inform policy makers. The sensitivity analysis discloses the crucial role of the intervention uptake by the population and of the capability to trace infected individuals. Finally, we explore the existence of a safe operating space. For Intermittent Lockdown we find only a small region in the model parameter space where the key indicators of the model stay within safe bounds, whereas this region is larger for the other exit strategies.

Funder

Horizon 2020

NWO

ZonMw

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference41 articles.

1. The contribution of social behaviour to the transmission of influenza A in a human population;AJ Kucharski;PLOS Pathog,2014

2. Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al. Report 9—Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand; 2020. Available from: https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/.

3. Covasim: an agent-based model of COVID-19 dynamics and interventions;CC Kerr;medRxiv,2021

4. Modelling the spread of the novel coronavirus;. https://www.rivm.nl/en/novel-coronavirus-covid-19/modelling.

5. Achieving herd immunity against COVID-19 at the country level by the exit strategy of a phased lift of control;S De Vlas;Sci Rep,2021

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3