From heterogeneous healthcare data to disease-specific biomarker networks: A hierarchical Bayesian network approach

Author:

Becker Ann-KristinORCID,Dörr MarcusORCID,Felix Stephan B.ORCID,Frost Fabian,Grabe Hans J.,Lerch Markus M.ORCID,Nauck Matthias,Völker UweORCID,Völzke Henry,Kaderali LarsORCID

Abstract

In this work, we introduce an entirely data-driven and automated approach to reveal disease-associated biomarker and risk factor networks from heterogeneous and high-dimensional healthcare data. Our workflow is based on Bayesian networks, which are a popular tool for analyzing the interplay of biomarkers. Usually, data require extensive manual preprocessing and dimension reduction to allow for effective learning of Bayesian networks. For heterogeneous data, this preprocessing is hard to automatize and typically requires domain-specific prior knowledge. We here combine Bayesian network learning with hierarchical variable clustering in order to detect groups of similar features and learn interactions between them entirely automated. We present an optimization algorithm for the adaptive refinement of such group Bayesian networks to account for a specific target variable, like a disease. The combination of Bayesian networks, clustering, and refinement yields low-dimensional but disease-specific interaction networks. These networks provide easily interpretable, yet accurate models of biomarker interdependencies. We test our method extensively on simulated data, as well as on data from the Study of Health in Pomerania (SHIP-TREND), and demonstrate its effectiveness using non-alcoholic fatty liver disease and hypertension as examples. We show that the group network models outperform available biomarker scores, while at the same time, they provide an easily interpretable interaction network.

Funder

Bundesministerium für Bildung und Forschung

Joachim Herz Stiftung

Fresenius Medical Care

Neuraxpharm

Servier

Janssen Cilag

German Federal State of Mecklenburg- West Pomerania

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference58 articles.

1. Inferring cellular networks—A review;F Markowetz;BMC Bioinformatics,2007

2. Fault detection and pathway analysis using a dynamic Bayesian network;MT Amin;Chemical Engineering Science,2019

3. Inferring gene regulatory networks from expression data;L Kaderali;Studies in Computational Intelligence,2008

4. Inference of Gene Regulatory Network Based on Local Bayesian Networks;F Liu;PLoS Computational Biology,2016

5. Learning discrete Bayesian networks from continuous data;YC Chen;Journal of Artificial Intelligence Research,2017

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3