Identifying the potential miRNA biomarkers based on multi-view networks and reinforcement learning for diseases

Author:

Su Benzhe1,Wang Weiwei1,Lin Xiaohui1ORCID,Liu Shenglan2,Huang Xin3

Affiliation:

1. School of Computer Science and Technology, Dalian University of Technology , Dalian 116024, Liaoning , China

2. School of Innovation and Entrepreneurship, Dalian University of Technology , Dalian 116024, Liaoning , China

3. School of Mathematics and Information Science, Anshan Normal University , Anshan 114007, Liaoning , China

Abstract

Abstract MicroRNAs (miRNAs) play important roles in the occurrence and development of diseases. However, it is still challenging to identify the effective miRNA biomarkers for improving the disease diagnosis and prognosis. In this study, we proposed the miRNA data analysis method based on multi-view miRNA networks and reinforcement learning, miRMarker, to define the potential miRNA disease biomarkers. miRMarker constructs the cooperative regulation network and functional similarity network based on the expression data and known miRNA–disease relations, respectively. The cooperative regulation of miRNAs was evaluated by measuring the changes of relative expression. Natural language processing was introduced for calculating the miRNA functional similarity. Then, miRMarker integrates the multi-view miRNA networks and defines the informative miRNA modules through a reinforcement learning strategy. We compared miRMarker with eight efficient data analysis methods on nine transcriptomics datasets to show its superiority in disease sample discrimination. The comparison results suggested that miRMarker outperformed other data analysis methods in receiver operating characteristic analysis. Furthermore, the defined miRNA modules of miRMarker on colorectal cancer data not only show the excellent performance of cancer sample discrimination but also play significant roles in the cancer-related pathway disturbances. The experimental results indicate that miRMarker can build the robust miRNA interaction network by integrating the multi-view networks. Besides, exploring the miRNA interaction network using reinforcement learning favors defining the important miRNA modules. In summary, miRMarker can be a hopeful tool in biomarker identification for human diseases.

Funder

AI S&T Program

Dalian National Laboratory for Clean Energy

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3