The automatic parameter-exploration with a machine-learning-like approach: Powering the evolutionary modeling on the origin of life

Author:

Liang YuzhenORCID,Yu Chunwu,Ma WentaoORCID

Abstract

The origin of life involved complicated evolutionary processes. Computer modeling is a promising way to reveal relevant mechanisms. However, due to the limitation of our knowledge on prebiotic chemistry, it is usually difficult to justify parameter-setting for the modeling. Thus, typically, the studies were conducted in a reverse way: the parameter-space was explored to find those parameter values “supporting” a hypothetical scene (that is, leaving the parameter-justification a later job when sufficient knowledge is available). Exploring the parameter-space manually is an arduous job (especially when the modeling becomes complicated) and additionally, difficult to characterize as regular “Methods” in a paper. Here we show that a machine-learning-like approach may be adopted, automatically optimizing the parameters. With this efficient parameter-exploring approach, the evolutionary modeling on the origin of life would become much more powerful. In particular, based on this, it is expected that more near-reality (complex) models could be introduced, and thereby theoretical research would be more tightly associated with experimental investigation in this field–hopefully leading to significant steps forward in respect to our understanding on the origin of life.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3