Towards an RNA/Peptides World by the Direct RNA Template Mechanism: The Emergence of Membrane-Stabilizing Peptides in RNA-Based Protocells

Author:

Shi Yu1,Yu Chunwu2,Ma Wentao1

Affiliation:

1. Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China

2. College of Computer Sciences, Wuhan University, Wuhan 430072, China

Abstract

How functional peptides may have arisen is a significant problem for the scenario of the RNA world. An attractive idea, the direct RNA template (DRT) hypothesis, proposes that RNA molecules can bind amino acids specifically and promote the synthesis of corresponding peptides, thereby starting the RNA/peptides world. To investigate the plausibility of this idea, we modeled the emergence of a “membrane-stabilizing peptide” in RNA-based protocells—such a peptide was suggested to have appeared early in the RNA world based on experimental evidence. The computer simulation demonstrated that the protocells containing the “RNA gene” encoding this peptide may spread in the system owing to the peptide’s function. The RNA gene may either originate de novo in protocells or emerge in protocells already containing ribozymes—here we adopt a nucleotide synthetase ribozyme as an example. Furthermore, interestingly, we show that a “nucleotide synthetase peptide” encoded by RNA (also via the DRT mechanism) may substitute the nucleotide synthetase ribozyme in evolution, which may represent how “functional-takeover” in the RNA world could have occurred. Overall, we conclude that the transition from the RNA world towards an RNA/peptides world may well have been mediated by the DRT mechanism. Remarkably, the successful modeling on the emergence of membrane-stabilizing peptide in RNA-based protocells is per se significant, which may imply a “promising” way for peptides to enter the RNA world, especially considering the weak interaction between RNA and the membrane in chemistry.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3