Efficient Bayesian inference for stochastic agent-based models

Author:

Jørgensen Andreas Christ SølvstenORCID,Ghosh AtiyoORCID,Sturrock MarcORCID,Shahrezaei VahidORCID

Abstract

The modelling of many real-world problems relies on computationally heavy simulations of randomly interacting individuals or agents. However, the values of the parameters that underlie the interactions between agents are typically poorly known, and hence they need to be inferred from macroscopic observations of the system. Since statistical inference rests on repeated simulations to sample the parameter space, the high computational expense of these simulations can become a stumbling block. In this paper, we compare two ways to mitigate this issue in a Bayesian setting through the use of machine learning methods: One approach is to construct lightweight surrogate models to substitute the simulations used in inference. Alternatively, one might altogether circumvent the need for Bayesian sampling schemes and directly estimate the posterior distribution. We focus on stochastic simulations that track autonomous agents and present two case studies: tumour growths and the spread of infectious diseases. We demonstrate that good accuracy in inference can be achieved with a relatively small number of simulations, making our machine learning approaches orders of magnitude faster than classical simulation-based methods that rely on sampling the parameter space. However, we find that while some methods generally produce more robust results than others, no algorithm offers a one-size-fits-all solution when attempting to infer model parameters from observations. Instead, one must choose the inference technique with the specific real-world application in mind. The stochastic nature of the considered real-world phenomena poses an additional challenge that can become insurmountable for some approaches. Overall, we find machine learning approaches that create direct inference machines to be promising for real-world applications. We present our findings as general guidelines for modelling practitioners.

Funder

Brain Tumour Charity

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference73 articles.

1. The Stagger-grid: A grid of 3D stellar atmosphere models. I. Methods and general properties;Z Magic;Astronomy & Astrophysics,2013

2. Vertex models: From cell mechanics to tissue morphogenesis;S Alt;Philosophical Transactions of the Royal Society B: Biological Sciences,2017

3. Drug-Induced Resistance in Micrometastases: Analysis of Spatio-Temporal Cell Lineages;J Perez-Velazquez;Frontiers in Physiology,2020

4. Facing the COVID-19 epidemic in NYC: a stochastic agent-based model of various intervention strategies;N Hoertel;medRxiv: the preprint server for health sciences,2020

5. Simulating tissue mechanics with agent-based models: Concepts, perspectives and some novel results;P Liedekerke;Computational Particle Mechanics,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3