A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors

Author:

Jiménez-Sánchez Juan,Martínez-Rubio ÁlvaroORCID,Popov Anton,Pérez-Beteta JuliánORCID,Azimzade YounessORCID,Molina-García DavidORCID,Belmonte-Beitia JuanORCID,Calvo Gabriel F.ORCID,Pérez-García Víctor M.ORCID

Abstract

Increasingly complex in silico modeling approaches offer a way to simultaneously access cancerous processes at different spatio-temporal scales. High-level models, such as those based on partial differential equations, are computationally affordable and allow large tumor sizes and long temporal windows to be studied, but miss the discrete nature of many key underlying cellular processes. Individual-based approaches provide a much more detailed description of tumors, but have difficulties when trying to handle full-sized real cancers. Thus, there exists a trade-off between the integration of macroscopic and microscopic information, now widely available, and the ability to attain clinical tumor sizes. In this paper we put forward a stochastic mesoscopic simulation framework that incorporates key cellular processes during tumor progression while keeping computational costs to a minimum. Our framework captures a physical scale that allows both the incorporation of microscopic information, tracking the spatio-temporal emergence of tumor heterogeneity and the underlying evolutionary dynamics, and the reconstruction of clinically sized tumors from high-resolution medical imaging data, with the additional benefit of low computational cost. We illustrate the functionality of our modeling approach for the case of glioblastoma, a paradigm of tumor heterogeneity that remains extremely challenging in the clinical setting.

Funder

James S. McDonnell Foundation

Junta de Comunidades de Castilla-La Mancha

Ministerio de Ciencia e Innovación

Asociación Pablo Ugarte

Universidad de Castilla-La Mancha

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference78 articles.

1. Multiscale cancer modeling;TS Deisboeck;Annual Review of Biomedical Engineering,2011

2. Hybrid models of tumor growth;KA Rejniak;Wiley Interdisciplinary Reviews: Systems Biology and Medicine,2011

3. A review of cell-based computational modeling in cancer biology;J Metzcar;JCO Clinical Cancer Informatics,2019

4. PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling;G Letort;Bioinformatics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3