TReSR: A PCR-compatible DNA sequence design method for engineering proteins containing tandem repeats

Author:

Davey James A.,Goto Natalie K.ORCID

Abstract

Protein tandem repeats (TRs) are motifs comprised of near-identical contiguous sequence duplications. They are found in approximately 14% of all proteins and are implicated in diverse biological functions facilitating both structured and disordered protein-protein and protein-DNA interactions. These functionalities make protein TR domains an attractive component for the modular design of protein constructs. However, the repetitive nature of DNA sequences encoding TR motifs complicates their synthesis and mutagenesis by traditional molecular biology workflows commonly employed by protein engineers and synthetic biologists. To address this challenge, we developed a computational protocol to significantly reduce the complementarity of DNA sequences encoding TRs called TReSR (for Tandem Repeat DNA Sequence Redesign). The utility of TReSR was demonstrated by constructing a novel constitutive repressor synthesized by duplicating the LacI DNA binding domain into a single-chain TR construct by assembly PCR. Repressor function was evaluated by expression of a fluorescent reporter delivered on a single plasmid encoding a three-component genetic circuit. The successful application of TReSR to construct a novel TR-containing repressor with a DNA sequence that is amenable to PCR-based construction and manipulation will enable the incorporation of a wide range of TR-containing proteins for protein engineering and synthetic biology applications.

Funder

Natural Sciences and Engineering Research Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference56 articles.

1. Current trends in protein engineering: updates and progress;R Sinha;Curr Protein Pept Sci,2019

2. Elowitz MB Synthetic biology: integrated gene circuits;N Nandagopal;Science,2011

3. A fast algorithm for genome-wide analysis of proteins with repeated sequences;M Pellegrini;Proteins,1999

4. Tandem repeats in proteins: from sequence to structure;AV Kajava;J Struct Biol,2011

5. A new concensus of protein tandem repeats and their relationship with intrinsic disorder;M Delucchi;Genes,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3